[1]毛媛媛,张东*,华小草,等.基于支持向量机的生鲜农产品风险损失预估[J].现代农业研究,2020,(1):47-50.
 MAO Yuanyuan,ZHANG Dong,HUA Xiaocao,et al.Support vector machine risk loss estimate for fresh agricultural products[J].Modern Agricultural Research,2020,(1):47-50.
点击复制

基于支持向量机的生鲜农产品风险损失预估
分享到:

《现代农业研究》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年1期
页码:
47-50
栏目:
农业经济
出版日期:
2019-12-26

文章信息/Info

Title:
Support vector machine risk loss estimate for fresh agricultural products
文章编号:
2096- 1073(2020)01- 0047- 50
作者:
毛媛媛张东*华小草胡海洋徐壮壮
华北水利水电大学电力学院
Author(s):
MAO Yuanyuan ZHANG DongHUA Xiaocao HU Haiyang XU Zhuangzhuang
North China University ofWater Resources and Electric Power
关键词:
支持向量机网格搜索生鲜农产品损失预估模型
Keywords:
support vector machine grid search fresh agricultural products loss forecast model
分类号:
S-9
文献标志码:
A
摘要:
生鲜农产品的损失预测对我国的农业生产和应急处理具有重要的意义,本论文在考虑自然 灾害风险如:多旱、涝、风、雹、霜冻等农业气象灾害的条件下,构建了基于网格搜索的支持向量机 (Support vector machine,SVM )生鲜农产品损失预测模型。对多项指标进行预测。选取1999 年- 2015 年的河南受灾数据作为研究样本,结果验证了基于网格搜索的支持向量机损失预测模型在生鲜 农产品损失预估上的合理性和有效性。
Abstract:
The loss prediction of fresh agricultural products is of great significance to China's agricultural production and emergency treatment, and this study, taking into account the risks of natural disasters such as drought, flood, wind, flood, frost and other agricultural meteorological disasters, has constructed a support ingestive search-based forecast ingress of fresh agricultural products, and has built a model for the loss of fresh agricultural products based on grid search, with a total output and per unit area yield. The area of the disaster and the disaster area and other indicators to predict. Taking fresh vegetables as an example in Henan Province, the disaster data from 1999-2015 were selected as a research sample, and the results verified the rationality and validity of the support vector machine loss prediction model based on grid search in the estimation of fresh agricultural products.

参考文献/References:

[1] H.S.Kim , S.Y.Sohn. Support vector machines for default prediction of SMEs based on technology.credit[J].European Journal of Operational Research, 2010,201(3):838-846. [2] A. K. Abbas, N. A. Al-haideri,A. A. Bashikh. Implementing artificial neural networks and support vector machines to predict lost circulation[J].Egyptian Journal of Petroleum,2019. [3] Z.Ma, C.Ye, H.Li ,W.Ma, Applying support vector machines to predict building energy consumption in China[J]. Energy Procedia, 2018 ,152:780-786. [4] E.M .Yahia, Cold chain development and challenges in the developing world[J]. Acta Horticulturae ,2010,(877):127-132. [5] 王宁,谢敏,邓佳梁,等.基于支持向量机回归组合模型的中长 期降温负荷预测[J].电力系统保护与控制,2016,44(3):92-97. [6] Gao X, Hou J. An improved SVM integrated GS-PCA fault diagnosis approach of Tennessee Eastman process[J]. Neurocom- - puting, 2016, 174: 906-911. [7] 张文雅,范雨强,韩华,等.基于交叉验证网格寻优支持向量机 的产品销售预测[J].计算机系统应用,2019,28(5):1-9. [8] 缪芸,缪翼军,陈红坤,等.基于模糊层次分析法与支持向量机 的变压器风险评估[J].现代电力,2014,31(6):64-69. [9] 汪海燕,黎建辉,杨风雷.支持向量机理论及算法研究综述[J]. 计算机应用研究,2014,31(5):1281-1286. [10] 王健峰,张磊,陈国兴,等.基于改进的网格搜索法的SVM 参 数优化[J].应用科技,2012,3:28-31. [11] 张学工.关于统计学习理论与支持向量机[J].自动化学报, 2000,26(1):32-42. [12] G.Najafi, B.Ghobadian, A.Moosavian .SVM and ANFIS for prediction of performance and exhaust emissions of a SI engine with gasoline-ethanol blended fuels[J]. Applied Thermal Engineering, 2016, 95: 186-203. [13] 辜丽琼,宋祖康,杨阳.基于改进支持向量机模型的交通拥堵 情况预测[J].软件导刊,2019,(7):37-41. [14] 李飞,蒋敏兰.基于支持向量机回归的蛋鸡产蛋率预测模型 [J].江苏农业科学,2019,47(13):249-252. [15] 李晓东,席升阳,潘立.基于最小二乘支持向量机的中国粮食 产量预测模型研究[D].洛阳:河南科技大学,2007. [16] 付元元,任东.支持向量机中核函数及其参数选择研究[J].科 技创新导报,2010,(9):6-7. [17] 王健峰,张磊,陈国兴,等.基于改进的网格搜索法的SVM 参 数优化[J].2012,39(3):28-31. [18] 孙德山.支持向量机分类与回归方法研究[D].大连:辽宁师范 大学,2004. [19] Sain, Stephan R . The Nature of Statistical Learning Theory[J]. Technometrics, 1996, 38(4):409-409. [20] 王平,黄河,吴玮.基于支持向量机的湖北省洪涝农业损失 预测模型[J].湖北农业科学,2014,53(18):4437-4440.

备注/Memo

备注/Memo:
作者简介:毛媛媛( 1994- ) ,女,河南周口人,硕士研究生。 通讯作者:张东( 1995- ) ,男,河南商丘人,硕士研究生。
更新日期/Last Update: 1900-01-01