参考文献/References:
[1] D.J. Murphy, The dynamic roles of intracellular lipid droplets:
from archaea to mammals, Protoplasma 249 (2012) 541-585.
[2] T.C. Walther, R.V. Farese Jr., Lipid droplets and cellular lipid
metabolism, Annu. Rev. Biochem. 81 (2012) 687-714.
[3] A.R. Thiam, R.V. Farese Jr., T.C. Walther, The biophysics
and cell biology of lipid droplets, Nat. Rev. Mol. Cell Biol. 14
(2013) 775-786.
[4] N. Kory, R.V. Farese Jr., T.C. Walther, Targeting fat: mechanisms
of protein localization to lipid droplets, Trends Cell Biol.
26 (2016) 535-546.
[5] F. Wilfling, J.T. Haas, T.C. Walther, R.V. Farese Jr., Lipid
droplet biogenesis, Curr. Opin. Cell Biol. 29 (2014) 39-45.
[6] A. Pol, S.P. Gross, R.G. Parton, Review: biogenesis of the
multifunctional lipid droplet: lipids, proteins, and sites, J. Cell
Biol. 204 (2014) 635-646.
[7] J. Yu, P. Li, The size matters: regulation of lipid storage by
lipid droplet dynamics, Sci. China Life Sci. 60 (2017) 46-56.
[8] R. Zechner, R. Zimmermann, T.O. Eichmann, S.D. Kohlwein,
G. Haemmerle,A. Lass, F. Madeo, FAT SIGNALS—lipases
and lipolysis in lipid metabolism and signaling, Cell Metab.
15 (2012) 279-291.
[9] J. Kerner, C. Hoppel, Fatty acid import into mitochondria,
Biochim. Biophys. Acta 1486 (2000) 1-17.
[10] S. Eaton, Control of mitochondrial beta-oxidation flux, Prog.
Lipid Res. 41 (2002) 197-239.
[11] N. Krahmer, R.V. Farese Jr., T.C. Walther, Balancing the
fat: lipid droplets and human disease, EMBO Mol. Med. 5
(2013) 973-983.
[12] R.P. Kuhnlein, Thematic review series: lipid droplet synthesis
and metabolism: from yeast to man. Lipid droplet-based
storage fat metabolism in Drosophila, J. Lipid Res. 53
(2012) 1430-1436.
[13] E.L. Arrese, F.Z. Saudale, J.L. Soulages, Lipid droplets as
signaling platforms linking metabolic and cellular functions,
Lipid Insights 7 (2014) 7-16.
[14] H.F. Hashemi, J.M. Goodman, The life cycle of lipid droplets,
Curr. Opin. Cell Biol. 33 (2015) 119-124.
[15] M.A. Welte, Expanding roles for lipid droplets, Curr. Biol.
25 (2015) R470-481.
[16] S. D'Andrea, Lipid droplet mobilization: the different ways to
loosen the purse strings, Biochimie 120 (2016) 17-27.
[17] A.R. Kimmel, C. Sztalryd, The perilipins: major cytosolic
lipid droplet-associated proteins and their roles in cellular
lipid storage, mobilization, and systemic homeostasis, Annu.
Rev. Nutr. 36 (2016) 471-509.
[18] M.R. Schneider, Beyond the adipocyte paradigm: heterogeneity
of lipid droplets and associated proteins, Exp. Cell Res.
340 (2016) 171.
[19] O. Shatz, P. Holland, Z. Elazar, A. Simonsen, Complex relations
between phospholipids, autophagy, and neutral lipids,
Trends Biochem. Sci. 41 (2016) 907-923.
[20] C.W. Wang, Lipid droplets, lipophagy, and beyond, Biochim.
Biophys. Acta 1861 (2016) 793-805.
[21] Thiam, A. R. et al. COPI buds 60-nm lipid droplets from reconstituted
water-phospholipid-triacylglyceride interfaces,
suggesting a tension clamp function. Proc. Natl Acad. Sci.
USA 110,13244-13249 (2013).
[22] Chen, Z. & Rand, R. P. The influence of cholesterol on phospholipid
membrane curvature and bending elasticity. Biophys.
J. 73, 267-276 (1997).
[23] Chernomordik, L. V. & Kozlov, M. M. Protein-lipid inter-play in fusion and fission of biological membranes.Annu.
Rev. Biochem. 72, 175-207 (2003).
[24] Koestler, D. C. et al. Blood-based profiles of DNA methylation
predict the underlying distribution of cell types: a validation
analysis. Epigenetics http://dx.doi. org/10.4161/
epi.25430 (2013).
[25] Bremond, N., Thiam, A. R. & Bibette, J. Decompressing
emulsion droplets favors coalescence. Phys. Rev. Lett. 100,
024501 (2008).
[26] Thiam, A. R., Bremond, N. & Bibette, J. Breaking of an
emulsion under an ac electric field. Phys. Rev. Lett. 102,
188304 (2009).
[27] Bremond, N. & Bibette, J. Exploring emulsion science with
microfluidics. Soft Matter 8, 10549-10559(2012).
[28] Aarts, D. G., Schmidt, M. & Lekkerkerker, H. N. Direct visual
observation of thermal capillary waves. Science 304,
847-850 (2004).
[29] Leikin, S., Kozlov, M. M., Fuller, N. L. & Rand, R. P.Measured
effects of diacylglycerol on structural and elastic properties
of phospholipid membranes. Biophys. J. 71, 2623-
2632 (1996).
[30] De Gennes, P.-G., Brochard-Wyart, F. & Quéré, D. Capillarity
and wetting phenomena: drops, bubbles, pearls,
waves (Springer, 2004).
[31] Karatekin, E. et al. Cascades of transient pores in giant vesicles:
line tension and transport. Biophys. J.84, 1734-1749
(2003).
[32] Biswas, S., Yin, S. R., Blank, P. S. & Zimmerberg, J.Cholesterol
promotes hemifusion and pore widening in membrane
fusion induced by influenza hemagglutinin. J. Gen. Physiol.
131, 503-513 (2008).
[33] Shemesh, T., Luini, A., Malhotra, V., Burger, K. N. & Kozlov,
M. M. Prefission constriction of Golgi tubular carriers
driven by local lipid metabolism: a theoretical model. Biophys.
J. 85, 3813-3827 (2003).
[34] Fernandez-Ulibarri, I. et al. Diacylglycerol is required for
the formation of COPI vesicles in the Golgi-to-ER transport
pathway. Mol. Biol. Cell 18, 3250-3263 (2007).
[35] Popoff, V., Adolf, F., Brugger, B. & Wieland, F.COPI budding
within the Golgi stack. Cold Spring Harb. Perspect. Biol.
3, a005231 (2011).
[36] Kabalnov, A. & Weers, J. Kinetics of mass transfer in micellar
systems: surfactant adsorption, solubilization kinetics,
and ripening. Langmuir 12, 3442-3448(1996).
[37] Kabalnov, A. S. Can micelles mediate a mass transfer between
oil droplets? Langmuir 10, 680-684 (1994).
[38] Ariyaprakai, S. & Dungan, S. R. Influence of surfactant
structure on the contribution of micelles to Ostwald ripening
in oil-in-water emulsions. J. Colloid Interface Sci. 343, 102-
108 (2010).
[39] Baret, J. C. Surfactants in droplet-based microfluidics. Lab
Chip 12, 422-433 (2012).
[40] Hanczyc, M. M., Fujikawa, S. M. & Szostak, J. W. Experimental
models of primitive cellular compartments: encapsulation,
growth, and division. Science 302, 618-622 (2003).
[41] J.K. Zehmer, Y. Huang, G. Peng, J. Pu, R.G. Anderson, P.
Liu, A role for lipid droplets in inter-membrane lipid traffic,
Proteomics 9 (2009) 914-921.
[42] N. Laibach, J. Post, R.M. Twyman, C.S. Gronover, D. Prufer,
The characteristics and potential applications of structural
lipid droplet proteins in plants, J. Biotechnol. 201 (2015)
15-27.
[43] G.J. Blomquist, A.-G. Bagneres, Insect Hydrocarbons: Biology,
Biochemistry, and Chemical Ecology, Cambridge University
Press, Cambridge, 2010.
[44] R. Makki, E. Cinnamon, A.P. Gould, The development and
functions of oenocytes, Annu. Rev. Entomol. 59 (2014) 405-
425.
[45] N.A. Herman, W. Zhang, Enzymes for fatty acid-based hydrocarbon
biosynthesis, Curr. Opin. Chem. Biol. 35 (2016)
22-28.
[46] A. Peramuna, R. Morton, M.L. Summers, Enhancing alkane
production in cyanobacterial lipid droplets: a model platform
for industrially relevant compound production, Life (Basel)
5 (2015) 1111-1126.
[47] M. Valachovic, M. Garaiova, R. Holic, I. Hapala, Squalene
is lipotoxic to yeast cells defective in lipid droplet biogenesis,
Biochem. Biophys. Res. Commun. 469 (2016) 1123-
1128.
[48] S. Yamashita, H. Yamaguchi, T. Waki, Y. Aoki, M. Mizuno,
F. Yanbe, T. Ishii, A. Funaki, Y. Tozawa, Y. Miyagi-Inoue,
K. Fushihara, T. Nakayama, S. Takahashi, Identification and
reconstitution of the rubber biosynthetic machinery on rubber
particles from Hevea brasiliensis, elife 5 (2016).
[49] G. Bauer, S.N. Gorb, M.C. Klein, A. Nellesen, M. von
Tapavicza, T. Speck, Comparative study on plant latex particles
and latex coagulation in Ficus benjamina, Campanula
glomerata and three Euphorbia species, PLoS One 9 (2014)
e113336.
[50] W. Chang, M. Zhang, S. Zheng, Y. Li, X. Li, W. Li, G. Li, Z.
Lin, Z. Xie, Z. Zhao, H. Lou, Trapping toxins within lipid
droplets is a resistance mechanism in fungi, Sci Rep 5
(2015) 15133.
[51] K.M. Sandoz, W.G. Valiant, S.G. Eriksen, D.E. Hruby, R.D.
Allen 3rd, D.D. Rockey, The broad-spectrum antiviral compound
ST-669 restricts chlamydial inclusion development
and bacterial growth and localizes to host cell lipid droplets
within treated cells, Antimicrob. Agents Chemother. 58
(2014) 3860-3866.
[52] S.E. Verbrugge, M. Al, Y.G. Assaraf, S. Kammerer, D.M.
Chandrupatla, R. Honeywell, R.P. Musters, E. Giovannetti,
T. O'Toole, G.L. Scheffer, D. Krige, T.D. de Gruijl, H.W.
Niessen, W.F. Lems, P.A. Kramer, R.J. Scheper, J. Cloos, G.
J. Ossenkoppele, G.J. Peters, G. Jansen, Multifactorial resistance
to aminopeptidase inhibitor prodrug CHR2863 in myeloid
leukemia cells: down-regulation of carboxylesterase 1,
drug sequestration in lipid droplets and pro-survival activation
ERK/Akt/mTOR, Oncotarget 7 (2016) 5240-5257.
[53] H. Sandermann Jr., Differential lipid affinity of xenobiotics
and natural compounds, FEBS Lett. 554 (2003),165-168.
[54] G. Murphy Jr., R.L. Rouse, W.W. Polk, W.G. Henk, S.A.
Barker, M.J. Boudreaux, Z.E. Floyd, A.L. Penn, Combustionderived
hydrocarbons localize to lipid droplets in respiratory
cells, Am. J. Respir. Cell Mol. Biol. 38 (2008),532-540.
[55] S. Bourez, S. Le Lay, C. Van den Daelen, C. Louis, Y. Larondelle,
J.P. Thome, Y.J. Schneider, I. Dugail, C. Debier, Accumulation
of polychlorinated biphenyls in adipocytes: selective
targeting to lipid droplets and role of caveolin-1,
PLoS One 7 (2012) e31834.